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Distributed Memory Architectures? 
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Abstract 
Current languages for nonshared memory architectures provide a relatively low-level program- 
ming environment. In this paper we describe a set of language primitives which allow the 
programmer to express data-parallel algorithms at a higher level, while also permitting control 
over those aspects of the program critical to performance, such as load balance and data distri- 
bution. Given such a program specification, the compiler automatically generates a distributed 
program containing send and receive constructs to perform interprocess communication. 
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1. Introduction 
Nonshared memory architectures are currently programmed using message-passing 

languages, such as CSP[2] and Occam[6], in which the programmer defines a system of 
interacting "tasks" or "processes," which communicate through exchange of messages. These 
languages allow the user to fully control and exploit the underlying hardware, and are well 
suited to some classes of algorithms, such as game tree searching and discrete event 
simulation, where the algorithm decomposes naturally into a system of cooperating processes. 
However, for algorithms relying on synchronous manipulation of distributed data structures, as 
is typical in numerical computation, such languages have proven awkward. The problem is 
that the "abstractions" in which the programmer tends to think, for example, distributed 
arrays, are not well represented in the language. 

In our approach, data parallel algorithms are specified as parallel loops acting on 
distributed data structures. The distribution of these data structures and the allocation of work 
to processors are separately specified. The compiler then maps this high-level specification 
into an interacting system of tasks, which communicate via message-passing. 

The goal here is to allow the user to specify the algorithm at the highest possible level. 
At the same time, we wish to make the user explicitly aware of data distribution, load 
balancing, and communication costs, since these issues critically effect performance on 
nonshared memory architectures. The many small details involved in message exchange and 
synchronization are relegated to the compiler. With these choices, the programmer is free to 
focus on high-level algorithm design and performance issues, while relegating the minor but 
complex details of interprocessor communication to the compiler and run-time environment. 

2. Language Primitives 
The goal of our approach is to allow the programmers to treat distributed data structures 

as single objects. In our approach, the programmer must specify three things: a) the processor 
topology on which the program is to be executed, b) the distribution of the data structures 
across these processors, and c) the parallel loops and where they are to be executed. The 
following subsections describe each of these kinds of specification. 

Processor Arrays 
The first thing that needs to be specified is a "processor-array." This is an array of 

physical processors across which the data structures will be distributed, and on which the 
algorithm will execute. Such a specification has the form: 

int np in 1 .. 8 
procs P[np, npl 

These statements allocate a square array P of np processors, where np is an integer constant 
between I and 8, dynamically chosen by the run-time system. 
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This construct provides a "real estate agent," as suggested by C. Seitz. Allowing the size 
of the processor array to be dynamically chosen is important here, since it provides 
portability, and avoids dead-lock in case a smaller than expected number of processors is 
available. The basic assumption here is that the underlying architecture can support multi- 
dimensional arrays of physical processor, an assumption natural for hypercubes and mesh 
connected architectures. 

Data Distribution Primitives 
Given a processor array, the programmer must specify the distribution of data structures 

across that processor array. The current version of our system supports only distributed 
arrays; other distributed data structures will be allowed in future versions. 

Array distributions are specified by a distribution clause in their declaration. This clause 
specifies a sequence of distribution patterns, one for each dimension of the array. Scalar 
variables and arrays without a distribution clause are simply replicated, with one copy 
assigned to each of the processors in the processor array. 

Each dimension of a data array can be distributed across the processors in one of several 
patterns, or can be left undistributed. The currently supported distribution patterns are block 
and cyclic. With a block distribution, each processor receives a contiguous block of elements 
of the array. Conversely, with a cyclic distribution, the array elements are distributed in a 
round-robin fashion across the processors. The number of dimensions of an array that are 
distributed must match the number of dimensions of the underlying processor array. Hyphens 
are used to indicate dimensions of data arrays which are not distributed. 

Forall Loops 
Operations on distributed data structures are specified by forall loops. The forall loop 

here is similar to that in BLAZE [5 ] .  The example below shows a loop which performs 63 
loop invocations, shifting the values in the array A one space to the left. 

forall i in 1 : 63 on P(A[i]) loop 
. . .  
A[i] := A[i+l] 
. . .  

end 
The semantics here are "copy-in copy-out," in the sense that the values on the right hand side 
of the assignment are the old values in array A, before being modified by the loop. Thus the 
array A is effectively, "copied into" each invocation of the forall loop, and then the changes 
are "copied out." 

In addition to the range specification in the header of the forall, there is also an on 
clause. This clause specifies the processor on which each loop invocation is to be executed. 
In the above program fragment, the on clause causes the ith loop invocation to be executed on 
the processor owning the ith element of the array A. 
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Given these primitives, a programmer can specify a data parallel algorithm at a high 
level, while still retaining control over those details critical to performance. As an example, 
the code fragment in Figure 1. performs a "smoothing" iteration on an array X, in which the 
new value of each element of X is an average of the values of its four neighbors. Note that 
the body of the forall loop is independent of the distribution of the array X, and of the 
processor array P. Thus a variety of distribution patterns could easily be tried by trivial 
modification of this program. 

3. Structure of the Generated Code 
Using the language primitives described in the last section, the user can provide a high 

level specification of the parallel algorithm. The compiler parses and analyzes the source 
code to produce a set of concurrently executing processes. The generated code runs in what 
has been termed the SPMD (Single Program Multiple Data) mode. That is, the same process 
code is down loaded onto each of the processors of the target architecture. The processes 
then execute asynchronously, interacting with each other via message-passing. 

There are two major issues in restructuring the source code for parallel execution. First, 
the forall loops have to be partitioned among the processes, as specified by the on clauses in 
the loop header. Second, all remote accesses have to be "compiled" into message passing 
communication. 

The first issue is straight forward. In the literature on restructuring compilers it is known 
as strip-mining or Joop-chunking, and is a standard technique [l, 71. The second issue is 
more subtle. All references to distributed data structures have to be analyzed, to identify 
potentially nonlocal accesses, and then converted into appropriate message passing 

int np in 1 .. 4 
pro= Wnp, npl 

real X[O..N+l, O..N+l] dist [block,block] 

for k in 1 : 50 loop 

forall (ij) in (1 : N, 1 : N) on P(X[i, j]) loop 

X[ij] := 0.25*(X[i+lj] + X[i-lj] + X[ij+ 

end 
end 

3 + X[ij-l 

Figure 1: Smoothing Iteration 
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communication. The rest of this paper will focus on this second issue. 

4. Induced Communication 
Whether an array reference is local or not depends on the array distribution pattern, on 

the on clause in the forall loop header, and on the way the array elements are accessed. In 
some cases, the compiler has enough information to specify exactly where data values should 
be "mailed" in order that all loop invocations have the information they need before their 

Figure 2: Irregular Triangular Grid 



5 

execution begins. This is the case for the smoothing iteration given in Figure 1. For each 
array reference, the compiler can determine which process owns the array element and which 
processes will need it in their loop invocations. It can then generate "optimal" message 
passing code. 

In many cases the compiler does not have enough information to determine, at compile 
time, where to mail data in order to allow the forall loop invocations to execute without 
access to nonlocal data. This situation arises, for example, with irregular grids, such as that 
shown in Figure 2. Here the array accesses depend on an indexing function computed at 
run-time. In such situations, the compiler has to generate "fetches" to retrieve nonlocal data. 
The process requiring the data will send a request message to the process owning the data, 
which will mail the requested value back to the requesting process. The run-time code 
needed to carry this out is relatively complex, but fortunately can be done in an efficient 
manner by pulling all "fetches" out of the forall loop itself. 

Consider the problem of performing a "smoothing" iteration on an irregular grid. Figure 
2. shows an irregular grid for aerodynamics calculations, generated by D. Mavripilis [4]. For 
this grid, the smoothing iteration would be more complex, as shown in Figure 3. 

Here, the values at the N nodes in the grid are represented as a one-dimensional array of 
values, value. Each node has a maximum of MAX-NBRS neighbors. The number of 
neighbors of each mesh point is stored in the vector n-nbrs, and the indices of these 
neighbors are stored in the two-dimensional array nbrs. 

real value[N], w[N, MAX-NBRS] dist ... 
int n-nbrs[N], nbrs[N, MAX-NBRS] dist ... 

nbrs := ... 5% generate grid 

while not done loop 

forall i in 1 : N on P(value[i]) loop 

for k in 1 : n-nbrs[i] loop 

value[i] := value[i] + w[i, k]*value[ nbrs[i, k] ] 

end 
end 

end 
Figure 3: Smoothing iteration on irregular grid 
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We suppose that the grid is generated on the fly by some algorithm. The values in the 
array nbrs are set at run-time, as indicated. The distributions of the arrays are not shown. 
Proper distribution of the arrays in this case raises load balancing issues outside the scope of 
this paper. The forall loop ranges over the mesh points in the grid. The new value at each 
mesh point is computed by the inner for loop, and is a weighted sum of the values at the 
mesh point's immediate neighbors. 

The important point here is that in the forall loop, the elements of the vector value are 
indexed by the array nbrs. Thus the compiler cannot determine which elements will be 
accessed, and has to generate remote "fetches". A high-level pseudo-code version of the 
generated code is presented in Figure 4. The first time through the loop, each process 
determines which nonlocal values it needs, and sends a "fetch request" to the owning process 
of each nonlocal value it needs. While waiting for its requests to be answered, the process 
services requests that it receives from other processes. When it has received all its required 
data, the process increments a global counter signaling that it-is done. It then continues 
servicing fetch requests from other processes until all processes have signaled receipt of their 
fetch requests. The global synchronization is required, since a priori knowledge of the 
number of fetch request each process will receive is not available. 

During this first time through the loop, each process can keep track of the fetch requests 
it fulfills. This information can then be used in subsequent trips through the loop, to directly 
send the data where it is needed, without performing any fetchs. Thus the overhead of the 
fetch requests and the global synchronization is incurred only the first time through the loop. 
In general, a large number of smoothing iterations are required, so the overhead of servicing 
these fetch requests the first time through the forall loop should be relatively minor. 

More Complex Examples 
In the irregular grids example presented above, the run-time system can easily determine 

the remote data needed by each process, before loop execution begins. This is possible, since 
neither of the arrays n-nbrs and nbrs is modified in the forall loop body. Thus it is easy for 
the compiler to analyze and restructure the program so that all nonlocal accesses are done 
ahead of the loop. 

In more complex situations, this may not be possible. Consider the case where the 
locality of each reference is intimately tied to the computation within the forall loop. In such 
situations, the fetches of remote data cannot be extracted from the body and must remain 
embedded within it. To handle these cases, one would have to set up the "threads" on each 
processor to service remote requests, in effect simulating shared memory on a nonshared 
memory architecture. The performance penalty in doing this would be severe. 

Our current system handles cases like the irregular grid example here, and somewhat 
more complexes cases as well. Its main limitation is that the only control constructs allowed 
in forall loops are branching constructs, and for loops whose limits are set outside the forall 
loop. In particular, while loops are not allowed inside forall loops. Our goal at the moment 
is to demonstrate the efficacy of this approach in cases where we can guarantee good 
performance. Extending this approach to more difficult case, such as that of while loops 
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On each processor. 

i 

I 

- first time through while loop 

communication phase 
- send remote fetch requests for all remote 

- service fetch requests for other processors 

- continue to service (potential) fetch requests 

values needed on this processor 

and receive requested data 

until all processors have received their requested data 

computation phase 
- execute "strip-mined" loop 

- subsequent times through while loop 

communication phase 
- send data needed by other processors 
- receive needed data from other processor 

computation phase 
- execute "strip-mined" loop 

Figure 4: Code generated for irregular gr ih  example 

within forall loops, is a subject for future research. 

5. Conclusion 
In this paper, we have presented a set of language primitives for nonshared memory 

architectures. These primitives allow specification of programs at a higher level than is 
possible with current message-passing languages. The programmer must still explicitly 
manage data distribution and load balancing, since these issues are critical to performance and 
cannot be automated with current compiler technology. However, the minor details of process 
management and of interprocessor communication and synchronization are relegated to the 
compiler, greatly reducing the burden on the programmer. 

One of the principal advantages of this approach is that it allows the algorithm to be 
designed and specified in a distribution independent manner. Specifying the algorithm and 
data distribution separately simplifies programming, enhances portability, and permits easy 
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"tuning" of programs, by allowing experimentation with a variety of data distributions and 
load balancing strategies, through minor changes in the program. 

A preliminary version of these languages primitives is currently under development at 
Purdue University. Though we do not yet have performance statistics, in simple cases, such 
as those considered in this paper, the message passing code our system produces is virtually 
identical to that produced by experienced programmers, so will achieve the same performance. 
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